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SUMMARY

This study extends the upstream flux-splitting finite-volume (UFF) scheme to shallow water equations
with source terms. Coupling the hydrostatic reconstruction method (HRM) with the UFF scheme achieves
a resultant numerical scheme that adequately balances flux gradients and source terms. The proposed
scheme is validated in three benchmark problems and applied to flood flows in the natural/irregular
river with bridge pier obstructions. The results of the simulations are in satisfactory agreement with
the available analytical solutions, experimental data and field measurements. Comparisons of the present
results with those obtained by the surface gradient method (SGM) demonstrate the superior stability and
higher accuracy of the HRM. The stability test results also show that the HRM requires less CPU time
(up to 60%) than the SGM. The proposed well-balanced UFF scheme is accurate, stable and efficient to
solve flow problems involving irregular bed topography. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Currently, the two-dimensional (2D) shallow water equations (SWE) are solved usually using the
high-resolution shock-capturing schemes implemented by the finite volume method (FVM) [1–4].
Unfortunately, these schemes can cause problematic stability/convergence in cases of non-
homogeneous equations due to imbalance between flux gradients and source terms [5]. In turn,
the source terms arise in the SWE as a result of variable bed topography, and handling of these
terms presents today a challenge for hydraulic calculation of rivers. Therefore, there is a need to
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develop a new class of numerical schemes that would deal with the non-homogeneous terms in
SWE with higher accuracy and better robustness.

The main difficulty in treating source terms is to properly balance the source terms with the flux
gradients. Several works [6–8] have used the fractional step method to split the non-homogeneous
SWE into homogeneous parts and source terms. Although the fractional step method can be
implemented easily, it induces numerical instability and errors in cases of steady flow with bed-
slope variations [8]. Therefore, several numerical methods for the correct treatment of source terms
have been proposed to construct so-called ‘well-balanced’ schemes [9–15]. A numerical scheme
is said to be well-balanced if it can preserve steady-state solutions in which the source terms are
exactly balanced by flux gradients [9]. Zhou et al. [16, 17] proposed a surface gradient method
(SGM) and compared it with the depth gradient method (DGM). Audusse et al. [18] proposed a
hydrostatic reconstruction method (HRM) for dealing with the source terms. Compared with other
methods [14, 15], HRM coding is easier since the Jacobian matrix is not used in the calculation
algorithm [19].

In the present study, the upstream flux-splitting finite-volume (UFF) scheme proposed by Lai
et al. [20] is adopted to estimate the numerical flux through each cell interface. In the treatment of
source terms, the HRM is employed to prevent the imbalance between flux gradients and source
terms. The UFF scheme is then coupled with the HRM, which has never been done before and
for this reason the new scheme is of interest. The three shallow-water flow simulations include
steady flow over an irregular bed, dam-break flow over two humps and still water over a 2D
symmetric hump. The simulation results obtained using the DGM and SGM are also presented for
comparison. Finally, simulations of typhoon flood flows around bridge piers are performed and
compared with field-measured water levels in the river.

2. GOVERNING EQUATIONS

The set of 2D SWE with source terms expressed in the differential conservative form is [21]

�Q
�t

+ �F
�x

+ �G
�y

=S (1)

in which

Q=
⎡
⎢⎣

h

hu

hv

⎤
⎥⎦ , F=

⎡
⎢⎢⎢⎣

hu

hu2+ gh2

2

huv

⎤
⎥⎥⎥⎦ , G=

⎡
⎢⎢⎢⎣

hv

huv

hv2+ gh2

2

⎤
⎥⎥⎥⎦ , S=

⎡
⎢⎣

0

gh(s0x −s f x )

gh(s0y−s f y)

⎤
⎥⎦ (2)

whereQ is the vector of conserved variables, F andG are the flux vectors in the x- and y-directions,
respectively, h is the water depth, u and v are the depth-averaged velocity components in the
x- and y-directions, respectively, g is the acceleration due to gravity, S is the source-term vector,
s0x =−�zb/�x and s0y =−�zb/�y are the bed slopes in the x- and y-directions, respectively, zb is
the bed elevation, and s fx and s f y are the friction slopes in the x- and y-directions, respectively.
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The Manning formula is adopted herein to estimate the friction slopes, which are defined as

s f x = un2m
√
u2+v2

h4/3
, s f y = vn2m

√
u2+v2

h4/3
(3)

where nm is Manning’s roughness coefficient (see [22]).

3. NUMERICAL FORMULATIONS

3.1. Numerical discretization by FVM

In the framework of FVM, the integral form of 2D SWE over the control volume � is written as [21]∫ ∫
�

�Q
�t

dW +
∫

��
E ·ndl=

∫ ∫
�
SdW (4)

in which n is the outward unit vector normal to the boundary ��,dW and dl are the area and
arc elements, respectively, and the integrand E ·n is the normal flux vector in which E=[F,G]T
The conserved variables Q are cell-averaged within the control volumes and then the basic vector
equation of FVM becomes

dQ
dt

+ 1

A

M∑
m=1

Em
n L

m = 1

A

∫ ∫
�
SdW (5)

where A is the area of a cell, m is the index of a cell edge, M is the total number of cell edges, Lm

is the length of a edge and Em
n is the normal flux across edge m separating two neighboring cells.

In turn, the flux Em
n can be determined from the rotational invariance property of the governing

equations [23]:
En(Q)=F cos�+G sin�=T(�)−1F(�Q)=T(�)−1F[T(�)Q] (6)

where � is the angle between the outward unit vector n and x-axis, �Q=[h,hun,hvt ]T is the vector
transformed from Q,F(�Q)=[hun,hu2n+gh2/2,hunvt ]T is the transformed normal flux, un and vt
are respectively the flow velocity components in x̄(normal) and ȳ(tangential) directions, which are
un =u cos�+v sin� and vt =v cos�−u sin�, and T(�) and T(�)−1 are the transformation matrix
and its inverse, respectively:

T(�)=
⎡
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1 0 0
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Combining Equations (5) and (6) gives

dQ
dt

+ 1

A

M∑
m=1

T(�)−1F(Q̄)Lm = 1

A

∫ ∫
�
SdW (8)

In the framework of FVM, the 2D problem formulated in Equation (8) is simplified into the series
of 1D local problem in the direction normal to the cell interface. Owing to the discontinuities at
the cell interface, the estimation of the normal flux F(�Q) at each cell interface can be referred to
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Figure 1. The finite-volume cell � and its cell interface.

the local 1D Riemann problem, which can be written in vector form as [24]
�Q̄
�t

+ �[F(Q̄)]
�x̄

=0 (9a)

with the initial condition

Q̄(x̄,0)=
{
Q̄L , x̄<0

Q̄R, x̄>0
(9b)

where x̄ is the transformed x-axis (see Figure 1). Here, the subscripts L and R represent values
of a variable in the left and right cells with respect to the interface LR.

The homogeneous part of Equation (8) is discretized using the Euler method [23] as follows:

Qn+1=Qn− �t

A

[
M∑

m=1
T(�)−1F(Q̄)Lm

]
+ �t

A

∫ ∫
�
SdW (10)

where n is the time index and �t is the time increment.

3.2. UFF scheme

The UFF scheme proposed by Lai et al. [20] is employed to estimate the numerical flux F(Q̄)=
FLR(Q̄L ,Q̄R) through each cell interface.

According to the work of Lai et al. [20], the flux vector F(Q̄) is splitted into two parts
(FLR,1,FLR,2) by introducing two wave speeds (s1,s2):

FLR(Q̄L ,Q̄R)= −s2
s1−s2

FLR,1+ s1
s1−s2

FLR,2 (11)

Using the Steger–Warming approach [24], the numerical flux FLR,1 is expressed as

FLR,1= 1
2 (PL +PR)+�Q̄av (12)
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where P=[0, p,0]T is the pressure component, p=gh2/2 is the hydrostatic pressure contribution
and the term �Q̄av represents the numerical viscosity, which is given by

�Q̄av = 1

2max(cL ,cR)

⎡
⎢⎣

pL − pR

(pun)L −(pun)R

(pvt )L −(pvt )R

⎤
⎥⎦ (13)

where c=√
gh is the local wave celerity. Using the upwind approach, the numerical flux FLR,2

is given by

FLR,2=[(un)L/R−s2]Q̄L/R+PL/R (14)

where the subscript L/R is defined as

L/R=
{
L if s1>0

R if s1�0
(15)

The values of s1 and s2 can be computed from

s1= 1
2 [(un)L +(un)R] (16a)

s2=
{
min[0, (un)L −cL ,u∗

n−c∗] if s1>0

max[0, (un)R+cR,u∗
n+c∗] if s1�0

(16b)

in which u∗
n and c∗ is estimated using the exact solutions given by Toro [23]:

u∗
n = 1

2 [(un)L +(un)R]+cL −cR (17a)

c∗ = 1
2 (cL +cR)+ 1

4 [(un)L −(un)R] (17b)

The detailed description of the UFF scheme is given in [20].
3.3. Treatment of source terms

According to the HRM, the transformed conserved variables are reconstructed as

Q̄HRM
LR− =

⎡
⎢⎢⎣

hHRMLR−
hHRMLR−(un)L

hHRMLR−(vt )L

⎤
⎥⎥⎦ , Q̄HRM

LR+ =

⎡
⎢⎢⎣

hHRMLR+
hHRMLR+(un)L

hHRMLR+(vt )L

⎤
⎥⎥⎦ (18)

Following the work of Audusse et al. [18, 19], the hydrostatic reconstructed water depth on each
edge of the considered interface is represented as

hHRMLR− =max[0,hL +(zb)L −(zb)LR], hHRMLR+ =max[0,hR+(zb)R−(zb)LR] (19)

in which (zb)LR is the interface bed elevation value. To ensure that the water height during a
simulation stays always positive, the interface bed elevation is defined in an upwind evaluation form

(zb)LR =max[(zb)L , (zb)R] (20)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:927–944
DOI: 10.1002/fld



932 J.-S. LAI ET AL.

In the presented framework of FVM, the numerical bed-slope source-term discretization can be
easily added into the numerical flux function as expressed in Equation (11). Owing to the rotational
invariance property of SWE, only the x component of the bed-slope source terms should be added
into numerical flux, which is modified as

F(Q̄)=FLR(Q̄HRM
LR− ,Q̄HRM

LR+)+

⎛
⎜⎜⎜⎝

0
g

2
h2L − g

2
(hHRMLR−)2

0

⎞
⎟⎟⎟⎠ (21)

Equation (21) shows that the reconstructed values Q̄HRM
LR− and Q̄HRM

LR+ expressed in Equation (18) are
respectively used instead of Q̄L and Q̄R to compute the interface numerical flux in the UFF scheme.
Finally, only the friction-slope source terms in the inhomogeneous part need to be discretized as

�t
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3.4. Stability and boundary conditions

The Courant–Friedrichs–Lewy (CFL) condition for the UFF scheme has to be imposed to ensure
the numerical stability [25, 26]:

CFL= �t

min(dLR)
max(

√
u2+v2+c)�1 (23)

where dLR indicates the distances between the cell L and the cell R.
Boundary conditions are of two different types: the land boundary and the open boundary. For the

land boundary, the velocity normal to the land is set to zero (i.e. hR =hL ,unR =−unL,vtR=vtL).
The open boundary is set by making use of the outgoing Riemann invariants. For more details
see [25, 26].

4. NUMERICAL RESULTS AND DISCUSSIONS

The numerical performance of the well-balanced UFF scheme is evaluated by simulating several
well-known benchmark problems, including steady flow over an irregular bed, dam-break flow over
two humps and steady flow over a 2D symmetric hump. The numerical accuracy of the scheme
is evaluated by comparing the results with exact solutions using the error norms of E1 and E2
defined as follows [27]:

E1=
∑ |Y sim−Y exact|∑ |Y exact| , E2=[∑(Y sim−Y exact)2]1/2 (24)

where Y sim and Y exact are simulated and exact results respectively at each computed cell. Note
that the exact solution in Equation (24) is analytical or experimental depending on the flow case.
Those by HRM to some simulations are carried out using SGM [16] and DGM [16] for comparison
purposes. Finally, the applicability of the proposed well-balanced scheme is demonstrated by flood
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Table I. Definition of the bed variations for steady flow over an irregular bed.

x (m) 0 50 100 150 250 300 350 400 425 435 450 475 500 505
zb (m) 0 0 2.5 5 5 3 5 5 7.5 8 9 9 9.1 9

x (m) 530 550 565 575 600 650 700 750 800 820 900 950 1000 1500
zb (m) 9 6 5.5 5.5 5 4 3 3 2.3 2 1.2 0.4 0 0

flow simulations in the river reach with irregular bed topography. All simulations were performed
on a Pentium IV 2.2GHz computer equipped with 1GB RAM.

4.1. Steady flow over an irregular bed

To demonstrate the applicability of the proposed scheme to solve channel flow with strong variations
of bottom topography, a steady flow in a 1500m long and 1m wide rectangular channel is
tested herein as a benchmark problem. This test case can provide a good insight into numerical
performance. The bed topography is described in Table I and shown in Figure 2(a). The same bed
topography was also used earlier by Zhou et al. [16] and by Tseng [28]. A discharge of 0.75m2/s
per unit width is imposed at the upstream boundary (i.e. x=0m) and water depth of 15m is
specified at the downstream boundary (i.e. x=1500m). The Manning roughness coefficient is set
to 0.1. Two hundred uniform cells are used. The computational time step is 0.08 s.

Figures 2(a), (b) and (c) show the simulated water levels, velocities and discharges per unit
width, respectively, in comparison with exact solutions. If the well-balanced property of a scheme
is preserved, the water level should be in a state of equilibrium (i.e. water level should remain
at 15m) and the discharge should be constant (i.e. discharge should remain at 0.75m2/s) [28].
The simulation results show that the source-term treatment by DGM produces significantly large
numerical errors due to the reconstruction of water depth at the cell interface. The results also
indicate that the well-balanced property of HRM and SGM does improve numerical accuracy. The
close-up of simulated discharges in Figure 2(c), for example, indicates that HRM produces better
resolution than SGM does. Table II summarizes the E1 norms and CPU times required to achieve
convergence. These data are used to quantitatively evaluate overall numerical accuracy as well
as efficiency. The data in Table II reveal that the HRM resulting in smaller E1 norms is more
accurate than the SGM, and that the SGM is about 14% more expensive than the HRM in terms
of CPU-time consumption. Consequently, the proposed scheme with HRM is the most accurate
and efficient among the presented methods. The DGM obtains most inaccurate solutions so that it
is not used for the other applications in the following sections.

4.2. Dam-break flow over two humps

To assess the capability of the proposed scheme for dam-break flow problems involving irregular
bed slope, data from experiments conducted by Aureli et al. [29] are adopted. Figure 3 shows the
schematic of the experiment consisting of a rectangular reservoir connected to a 1m wide channel
with two humps. The experimental series are focused on setting different upstream water levels
and different numbers of humps to induce the rarefaction waves, shock waves and reverse flows in
the flow field. Two test cases of experiments are considered herein. Test case 1 is the flow running
over hump 1 with an initial upstream water level of 0.35m. Test case 2 is the flow propagating
over both humps 1 and 2 with an initial upstream water level of 0.45m. Both test cases have the
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Figure 2. Comparisons of exact solutions with simulated (a) water level; (b) velocity; and (c) discharge
per unit width for the steady flow over an irregular bed.
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Table II. The E1 norms and CPU time for the steady flow over an irregular bed.

E1 of the
Treatments of E1 of the water E1of the discharge CPU for
source terms level velocity per unit width convergence (s)

HRM 1.47×10−4 1.05×10−2 0.99×10−2 0.893
SGM 1.91×10−4 1.51×10−2 1.11×10−2 1.015

Reservoir

Dam 

x = 0

2.0 m 0.2 m 0.2 m 

0.05 m 

Upstream water level 

0.4 m 0.4 m 

0.213 m0.108 m 

0.1 m 

Hump 1
Hump 2 

0.35 m 

3.6 m 

Figure 3. Layout of the dam-break experiment over two humps.
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Figure 4. Comparisons of the measured and simulated results for the test case 1 of the
dam-break experiment over one hump.

initial downstream water depth of 0m. The Manning roughness coefficient is set to 0.01, which
is the value adopted in Aureli et al. [29]. The walls and the upstream end of the channel are set
as the land boundary conditions. A transmissive boundary condition [23] is set at the downstream
end of the channel. The computational mesh with 140 uniform cells is used and the computational
time step is 0.02 s. The total simulation time is 15 s.

For the test case 1 with hump 1, Figure 4 compares the measured and simulated water-depth
hydrographs. For all observation stations at x=1.4, 2.25, 3.4 and 4.5m, the simulated results
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Figure 5. Comparisons of the measured and simulated results for the test case 2 of the
dam-break experiment over two humps.

including the shocks, the dry/wet fronts and the reverse flows agree closely with the measured.
For the test case 2 (two humps), the solution is shown in Figure 5. One can see from the figure that
the HRM and SGM simulations reveal similar trends in the water-depth hydrographs. However, the
HRM method appears to provide sharper resolution of shocks than that by SGM. Moreover, the
SGM requires 14% more CPU time than the HRM.

4.3. Still water over a 2D symmetric hump

Still-water flow over a 2D symmetric hump is a common benchmark test (see [14, 30]), and it
is simulated here to assess. The numerical experiment is performed in a 1m square pool. In the
center of the pool, there is a symmetric hump at the bottom defined as follows:

zb(x, y)=max{0,0.25−5[(x−0.5)2+(y−0.5)2]} (25)

Figure 6 shows the simulation domain with the defined bed elevation contours [14, 30] and the
unstructured mesh of 2020 cells. As t=0, the water is still (u=0), whereas the water level in the
pool is 0.5m. Naturally, the exact solution for this problem is u=0 for t>0. The computational
time step is 0.01 s.

The HRM simulation results reveal no change in the velocity field and the still-water state
is maintained. For comparison, Figure 7 plots the 2D contours of water depth and the velocity
fields computed by SGM. Although the SGM is a well-balanced treatment of source terms, it
produces spurious velocity field (see Figure 7) with the maximum velocity of 0.016m/s. This is a
consequence of central bed-slope discretization in the SGM. We note that the spurious velocities
decrease with refining the computational mesh. For instance, a simulation using a grid of 4040
cells also resulted in a spurious velocity field, but with the maximum velocity of 0.005m/s.
Nevertheless, spurious velocities may cause the problem of numerical instability.
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Figure 6. Unstructured mesh and bed elevation contours in still-water flow
simulation over a symmetric hump.
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Figure 7. 2D simulated water depths and velocity field using SGM for still-water
flow simulation over a symmetric hump.

To find the stability limits of the HRM and SGM schemes, an additional test is performed, in
which the same mesh of 2020 cells is employed, but the time step is consecutively increased until
the simulation goes unstable. The results are given in Table III. The maximum allowable time steps
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Table III. The E2 norms and time step for still water over a 2D symmetric hump.

Treatments of source terms E2 of water level E2 of velocity Allowable time step (s)

HRM 3.87×10−4 6.71×10−4 0.023
SGM 3.11×10−3 3.06×10−2 0.017

 

Figure 8. Computational mesh with bed elevation contours and six water-level gauge stations for the 2D
flood flow simulations in the study reach.

for the two schemes are 0.023 and 0.017 s, respectively. Therefore, from the perspective of CPU
time the SGM scheme is 24% more expensive than the HRM, whereas the accuracy of the results
obtained using the HRM are higher than that of SGM (see table). Consequently, the HRM provides
better numerical accuracy and stability in the 2D still-water flow with variable bed topography.

4.4. Flood flows around bridge piers

The well-balanced UFF scheme is applied to the simulation of flood propagation in the 2D irregular
bed topography, for which the field-measured water levels are available at six gauges [31]. The study
area is the Yuanshan reach of the Keelung River, which is a major tributary of the Tamshui River
in northern Taiwan. This reach is confined by vertical-walled levees and has a significant-narrow
bend and irregular bed variations between the main river channel and the floodplain. Moreover,
hydraulic structures in the form of bridge piers are presented in the reach being considered.

Figure 8 shows the computational mesh that includes 1576 quadrilateral and 2951 triangular
cells. It also shows the bed elevations that range from 14m below sea level to 4m above sea
level. Six water-level gauge stations provide the field-measured water level [31] data required for
Manning coefficient calibration and numerical verification. The gauge stations G1, G2 and G3 are
located on the right bank, and G4, G5 and G6 are located on the left bank. Keelung River flooding
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usually results from heavy rainfall during typhoon events, the following two of which are analyzed
here: Typhoon Zeb on 15 October 1998 and Typhoon Xangsane on 31 October 2000.

For the typhoon Zeb flood flow simulation, theManning roughness coefficients are first calculated
by comparing the simulated results with the field-measured water levels at peak-flood discharge.
The Manning roughness coefficients are initially given in the simulation domain based on the
main river channel or floodplain regions [22]. In the main river channel, the Manning roughness
coefficient is set to 0.025. In the floodplain, the Manning roughness coefficient is set to 0.05.
Regarding boundary conditions, both sides of the vertical-walled levees along the simulation
domain are considered as the land boundaries. A peak-flood discharge of 1800m3/s in the Zeb
typhoon is imposed at the subcritical inflow boundary and a field-measured water depth of 2.77m
is specified at the subcritical outflow boundary. As t=0, the velocity field is set to u=0, whereas
the initial water level is set to 6m in the entire computational domain. The time step is 0.03 s.

Table IV compares the simulated and the measured water levels at the six gauges after calibrating
the Manning roughness coefficients. Good agreement is obtained at the E1 norm for water level.
Figures 9 and 10 present the simulated results under peak-flood condition to show the water-level

Table IV. Comparison of the measured data with the simulated water levels for flood flow
simulations in the study reach.

Typhoon Zeb Typhoon Xangsane

Simulated (m) Simulated (m)

Gauges Measured (m) HRM SGM Measured (m) HRM SGM

G1 5.51 5.51 5.51 7.30 7.28 7.25
G2 3.80 3.76 3.64 5.39 5.35 5.35
G3 3.37 3.37 3.39 4.59 4.59 4.51
G4 4.66 4.81 4.54 6.49 6.52 6.31
G5 4.38 4.33 4.28 5.80 5.62 5.35
G6 3.52 3.56 3.32 4.65 4.69 4.62

E1 norm 1.10×10−2 2.38×10−2 E1 norm 9.06×10−3 2.43×10−2
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Figure 9. Simulated water-level contours in the Zeb typhoon flood flow simulation.
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Figure 10. Velocity field in the Zeb typhoon flood flow simulation.
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Figure 11. Comparisons of the field-measured and the simulated water levels along the left/right bank in
the Zeb typhoon flood flow simulation.

contours and the velocity field, respectively. The close-up in Figure 10 shows that the major stream
flow is confined along the main river channel, which indicates that the simulated velocity field is
quite reasonable. Figure 11 shows the simulated water-level profiles along the left and right banks.

Second, flood flow during the Xangsane typhoon is simulated. The Manning roughness coeffi-
cients in the simulation domains are given by the calibrated results in the Zeb typhoon. A peak
flow discharge of 2700m3/s in the Xangsane typhoon is imposed at the subcritical inflow boundary
and field-measured water depth of 4.2m is specified at the subcritical outflow boundary. The initial
conditions and the computational time step are the same as those in the flood flow simulation for
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Figure 12. Water-level contours in the Xangsane typhoon flood flow simulation.
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Figure 13. Velocity field in the Xangsane typhoon flood flow simulation.

Typhoon Zeb. Table IV compares the simulated water levels and measured readings from the six
gauges. Figures 12 and 13 present the simulated results for water-level contours and velocity field,
respectively, under peak-flood condition. Figure 13 demonstrates that the flow velocities in the
main river channel are faster than those in the floodplain. Figure 14 shows the simulated water-level
profiles along the left and right banks, which reveals good agreement with the measured data.
In the close-up view of the area surrounding station G2, the local flow velocity tends to slow down
in front of the bridge piers. Hence, the water levels along the right bank increase significantly
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Figure 14. Comparisons of the field-measured and the simulated water levels along the left/right bank in
the study reach for the Xangsane typhoon flood flow simulation.

due to bridge pier obstructions. The results by SGM are also plotted in Figure 14 for comparison
with those by HRM. Table IV summarizes the E1 error norms to quantitatively evaluate overall
numerical accuracy. Clearly, the E1 error estimates obtained for the flood flow simulations in the
Zeb and Xangsane typhoons reveal the superior accuracy of HRM.

On the other hand, the stability test through numerical experiments is also performed herein.
The maximum allowable time steps for the HRM and the SGM are 0.033 and 0.018 s, respectively.
Hence, the HRM requires 60% less CPU time than the SGM.

5. CONCLUSIONS

The proposed well-balanced UFF scheme is extended to adequately balance flux gradients and
source terms for shallow-water flow simulations with irregular bed topography. The new algorithm
deals with the source terms using the HRM in the cell-centered finite-volume framework. The
algorithm does not require the calculation of the Jacobian matrix that makes programming easier.
The desirable well-balanced feature of the scheme is validated by simulating three benchmark
problems and two flood flow simulations of a natural river.

The results of simulations indicate that both HRM and commonly used SGM can achieve
steady-state solutions. In the 2D still-water flow test, the SGM produces spurious velocities, but
the HRM does not. Compared with the SGM, the HRM consumes much less CPU time (up to
60%) with higher accuracy of the results.

The satisfactory results of the benchmark cases for model validation and real flood flow simula-
tions for model application demonstrate that the proposed well-balanced UFF scheme is accurate,
stable and efficient for practical hydraulic engineering analyses.
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